Ultrastructural Observations on Lumbar Spinal Cord Recovery After Lesion in Lizard Indicates Axonal Regeneration and Neurogenesis
نویسنده
چکیده
After lumbar spinal cord transection, lizards recover some un-coordinated movements of the hind limbs including some walking ability. The transected spinal cord was examined using electron microscopy to study the degree of regeneration. A bridge tissue located between the two proximal and distal ends of the transected spinal cord, representing the regenerated cord, was found at 29-45 days post-lesion. The ependyma formed ampullar enlargements but no continuous central canal between the two stumps was re-established. Some cerebro-spinal fluid contacting neurons and peri-ependymal small neurons contacted by few synaptic boutons were found. Pale cells of astrocyte type were also identified. Numerous unmyelinated and sparse myelinated axons in the bridge appear connected to ependymal cells and oligodendrocytes. The origin of these axons remains unknown but previous studies have indicated that at least some of them are derived from interneurons, including those located around the central canal and in the dorsal grey matter of the proximal spinal cord stump. This limited regeneration can explain the recovery of part of the motor activity of the hind limbs in these lizards, possibly through the re-connection across the bridge of the intrinsic circuit of the central locomotory pattern generator.
منابع مشابه
Mechanisms of spinal cord injury regeneration in zebrafish: a systematic review
Objective(s):To determine the molecular and cellular mechanisms of spinal cord regeneration in zebrafish. Materials and Methods: Medical databases of PubMed and Scopus were searched with following key words: Zebrafish; spinal cord injuries; regeneration; recovery of function. The map of mechanisms was performed using Xmind software. Results: Wnt/ß-catenin signaling, L1.1, L1.2, Major vault prot...
متن کاملObservations on Lumbar Spinal Cord Recovery after Lesion in Lizards Indicates Regeneration of a Cellular and Fibrous Bridge Reconnecting the Injured Cord
The lumbar spinal cords of lizards were transected, but after the initial paralysis most lizards recovered un-coordinated movements of hind limbs. At 25-45 days post-lesion about 50% of lizards were capable of walking with a limited coordination. Histological analysis showed that the spinal cord was transected and the ependyma of the central canal formed two enlargements to seal the proximal an...
متن کاملThe Expression implication of GDNF in ventral horn and associated remote cortex in rhesus monkeys with hemisected spinal cord injury
Objective(s): Glial cell line-derived neurotrophic factor (GDNF) can effectively promote axonal regeneration,limit axonal retraction,and produce a statistically significant improvement in motor recovery after spinal cord injury (SCI). However, the role in primate animals with SCI is not fully cognized. Materials and Methods:18 healthy juvenile rhesuses were divided randomly into six groups, obs...
متن کاملRepair of Spinal Cord Injury by Co-Transplantation of embryonic Stem Cell-Derived Motor Neuron and Olfactory Ensheathing Cell
Background: The failure of regeneration after spinal cord injury (SCI) has been attributed to axonal demyelination and neuronal death. Cellular replacement and white matter regeneration are both necessary for SCI repair. In this study, we evaluated the co-transplantation of olfactory ensheathing cells (OEC) and embryonic stem (ES) cell-derived motor neurons (ESMN) on contused SCI. Methods: OEC...
متن کاملCorticospinal regeneration into lumbar grey matter correlates with locomotor recovery after complete spinal cord transection and repair with peripheral nerve grafts, fibroblast growth factor 1, fibrin glue, and spinal fusion.
Knowledge of which tracts are essential for the recovery of locomotor function in rats after repair is unknown. To assess the mechanism of recovery, we examined the correlation between functional recovery and axonal regeneration. All rats underwent complete cord transection and repair with peripheral nerves, fibroblast growth factor 1, fibrin glue, and spinal fixation. Repaired rats recovered b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014